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Abstract—A new tripodal a-cyclodextrin having three ureido-bipyridyl tethers symmetrically distributed on its upper rim was
prepared in one step by the polymer supported �phosphine imide� reaction in a medium yield. As expected, the highly selective
complexation properties towards �hard� and �soft� cations were maintained with regards to the URFT-Cd (upper rim fully tethered)
family previously investigated. Its EuIII and TbIII lanthanide complex fluorescence behaviour clearly indicates that a limited number
of tethers allow a better bis-heterocyclic antenna self-organisation around the cation leading to enhanced fluorescence properties.
� 2003 Elsevier Ltd. All rights reserved.
One family of Cds: the metallocyclodextrins (metal-
loCds) are viewed as coordination compounds or metal
complexes in which one or several modified Cds act as
ligands and/or as �distributors� of spatially preorganised
substituents. However, the majority of metalloCds are
formed from functionalised Cds, which incorporate one
or more metal ion coordinating groups of varying
degrees of complexity. Most of the studies on these
systems concern the coordination of one or more metal
ions to produce at least a binary metalloCd in which
subsequently, a guest may be complexed in the Cd core
and may also be coordinated by the metal to give a
ternary metalloCd. Under these circumstances an
opportunity arises to study the effects of the metal centre
and Cd interactions on metalloCd stability and guest
complexation.1 In the past decade the metallocyclo-
dextrins have been shown to be a valuable source of
original supramolecular devices exhibiting a wide range
of interesting properties such as enzyme mimicking,2

catalysis,3 chiral discrimination4 and energy and elec-
tron transfer.5 In recent years, a limited number of these
mononuclear and/or polynuclear designed metallocy-
clodextrins in which energy and electron transfer pro-
cesses have been observed, have appeared in current
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literature.6 In particular, lanthanide complexes of
modified cyclodextrins, which possess luminescent
properties, make them interesting to build as molecular
energy-conversion systems potentially able to act as
miniature photomolecular devices in the development
of nanotechnology.7

In the course of our investigations on the coordination
properties of such systems we have recently reported a
set of new URFT-Cds (upper rim fully tethered) with
ureido-8 or thioureido-bipyridyl9 tethers affording
powerful metal-chelating devices having three distinct
superimposed selective intramolecular recognition sites.

The above-mentioned podands were able to discriminate
between �hard� and �soft� metals, to afford distinct
mononuclear or dinuclear metal complexes and to form
inclusion complexes with the Cd hydrophobic cavity.10

The aim of the present work is to propose an original
synthesis of a new modified Cd having a limited number
of ureido-bipyridyl tethers symmetrically distributed on
the upper rim of an a-Cd (Fig. 1) and to explore the
impact of these modifications on its complexation
properties and fluorescence behaviour.

The synthesis of symmetrically substituted Cds of
interest was directly conditioned by the accessibility of
corresponding Cd intermediates, which could be
obtained in bulk and if possible by an easy route with
limited long chromatographic separations and/or
tedious protection–deprotection steps. Recently, we
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Figure 1. Schematic representation of the a-Cd tripode and its three
selective sites of complexation.
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presented one example of such a preparation in the case
of a-cyclodextrin.11 This procedure allowed a direct
efficient synthesis of the corresponding metallo-a-Cds in
three steps from native a-Cd and in one step from the
6A, 6C, 6E-triazido-6A, 6C, 6E-trideoxy-6B, 6D, 6F-tri-O-
methyl-hexakis-(2,3-di-O-methyl)-cyclomaltohexaose 1
by the �one pot� phosphine imide polymer-supported
reaction12 (Scheme 1). 5-aminomethyl-50-methyl-2,20-bi-
pyridine 2 was obtained using a literature-modified
method.13;14 The tripode 3 was prepared by condensa-
tion of 1, a slight excess of the amine 2 (4 equiv) and
polystyrene-bound triphenylphosphine resin (2 g). The
reaction was conducted for 24 h at rt in DMF, in a
reactor for solid-phase peptide synthesis equipped with a
CO2 inlet. The product was precipitated from ether as
a pure pink powder without any further purification
(yield: 41%).
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Scheme 1. Reagents and conditions: (i) Ph-P- (Ph) P 2/rt/DMF/CO2/24 h
Analysis of 3 by FTIR, UV–vis, NMR and ESI-MS are
in agreement with the proposed structure.15 The positive
mode ESI mass spectrum of 3 shows the expected
monocharged base peak [M+Na]þ at 1870.2 a.m.u.
along characteristic fragment as [M)(NH–CO–NH–
Bpy)+Na]þ at 1635.2 u.m.a. indicating rapid cleavage of
the tethers on the upper rim of 3.

The electronic spectrum of 3 recorded in MeOH shows
two distinct maxima at 244 nm (38,400mol�1 dm3 cm�1)
and 286 nm (41,200mol�1 dm3 cm�1). The IR spectrum
of 3 exhibits the characteristic frequency of the urea
functionalities at 1660 cm�1. In the lanthanide com-
plexes this frequency was shifted to 1643 cm�1 indicating
efficient coordination of the carbonyl with the lantha-
nide. The structural investigation of 3 was completed
with the help of 13C NMR.15 The spectrum exhibited
the expected cyclodextrin and bipyridyl signals.

As illustrated in Figure 1 the 6A, 6C, 6E-trisubstituted-
ureido-bipyridinyl-Cd 3 accommodated two potential
metal complexation sites inside its structure. Titration of
the ligand 3 with EuCl3Æ6H2O, TbCl3Æ6H2O, �hard�
HSAB classified lanthanide cations and FeSO4, CuSO4

�borderline� transition metals was monitored by UV–vis
spectroscopy.

As expected and observed previously in the case of
URFT-b-Cds derivatives,8 titration curves showed the
formation of mononuclear complexes. For example
(Fig. 2) the titration by CuII determined an isobestic
point at 300 nm along a strong red shift of the 285 nm
absorption band to 310 nm, as a result of efficient metal
coordination of the copper cation at the bipyridyl
functional groups. The complex was found to have [1:1]
stoichiometry. The same stoichiometry and a similar set
of curves with the addition of the characteristic MLCT
band at 520 nm were found for FeII. The titration of 3 by
EuIII and TbIII lanthanide trichlorides determined also
an isobestic point but no red shift and give mononuclear
complexes as found before with URFT-Cds analogues.8

The stability constants logðb11Þ of all the metal com-
plexes have been determined16 and were 5.1 ± 0.6 and
5.6 ± 0.4 for the europium and terbium complexes,
respectively, and 6.4 ± 0.2 for the copper and 6.7 ± 0.2
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Figure 2. Spectrophotometric titration of ligand 3 with Cu2þMeOH;

C ¼ 1:0� 10�5 mol L�1. CuSO4 C ¼ 0:07–1:47 equiv. emax ¼ 41,200

M�1 cm�1.
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for the iron complexes. It is interesting to point out that
the FeII complex was found to be soluble and very stable
in water for several months. The corresponding Eu3þ or
Tb3þ complexes of 3 are compounds, which also exhibit
a strong luminescence arising from (A-ET-E) light
conversion process (antenna effect). The luminescence
excitation of the complexes at 289 nm caused standard
emission of the EuIII and TbIII lanthanide ions, thus the
transitions corresponding to 5D0–

7Fj (Eu
III) and 5D4–

7Fj
(TbIII); (Fig. 3) are normally observed. Lifetimes
recorded in the time resolved mode for the two com-
plexes from measurement of the decreasing emission
intensity at 544 nm (terbium) and 615 nm (europium)
gave sð300KÞ ¼ 1:13 and 0.7ms, respectively. Quantum
yields were also calculated using the relation of Haas
and Stein17 and gave Uf ¼ 0:103� 30% and 0.015± 30%
for the terbium and europium complexes, respectively.
The sensitivity of the terbium complex of 3 to water also
deserves to be mentioned. Addition of 3% v/v of water
caused only 20% extinction of its fluorescence emission
while 50% was observed in the case of its europium
complex and URFT-b-Cds analogues. In a preliminary
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Figure 3. Excitation and emission spectra of the terbium complex of 3;

C ¼ 1� 10�5 mol L�1 in MeOH at 300K.
approach these results show that the fluorescence char-
acteristics of terbium complex of 3 are better than those
observed for the URFT-b-Cd terbium complex ana-
logue (s ¼ 0:71ms).8 Looking at these structures it is
obvious that, very probably, only three ureido-bipyridyl
tethers on the upper rim of the Cd should be sufficient to
complete the coordination sphere of the lanthanide and
transition cations. So, it is suggested that the supple-
mentary noncoordinated heterocyclic units in the
URFT-Cds preferentially brought a negative contribu-
tion on the bis-heterocyclic antenna self-organisation
and led to a negative contribution to the fluorescence
emission intensity.

In conclusion, it is interesting to note that the com-
plexation properties of URFT-Cds were maintained in
the new ligand 3 even with a limited number of tethers
on the upper rim of the cyclodextrin. Moreover, the
fluorescence properties of its lanthanide complexes were
enhanced, probably by better organisation of the tethers
around the lanthanide cation giving to it better protec-
tion from the solvent nonradiative deactivation. An
extensive study of the steady-state photophysical prop-
erties of these systems is in progress and will be
described in a forthcoming paper.
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